Abstract

Quantitative metal grade inversion based on hyperspectral data is an effective approach to achieve the real-time in situ determination of ore body grades and has the advantages of low cost compared with traditional chemical analysis methods. However, the redundant nature of hyperspectral data and the parameter-limiting nature of machine learning algorithms reduce the modeling accuracy and precision, resulting in severe limitations on the application of hyperspectral techniques for the grade inversion of Deerni copper ore bodies. In this paper, we first obtained visible-NIR hyperspectral data for 190 ore samples using a spectrometer and determined the copper content of the sample set using chemical analysis; then, we processed the raw hyperspectral data using three dimensionality reduction algorithms and optimized a BP neural network based on an evolutionary algorithm. Finally, a Deerni copper grade inversion model was established using the hyperspectral data before and after dimensionality reduction, and the inversion accuracy and precision was compared and analyzed with that obtained by the BP neural network, the random forest and the variable hidden layer nodes models. The combination of the LLE dimensionality reduction algorithm and the optimized BP neural network algorithm achieves the highest modeling precision, with an R 2 of 0.950.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call