Abstract

To better understand the biology of extinct animals, experimentation with extant animals and innovative numerical approaches have grown in recent years. This research project uses principles of soil mechanics and a neoichnological field experiment with an African elephant to derive a novel concept for calculating the mass (i.e., the weight) of an animal from its footprints. We used the elephant's footprint geometry (i.e., vertical displacements, diameter) in combination with soil mechanical analyses (i.e., soil classification, soil parameter determination in the laboratory, Finite Element Analysis (FEA) and gait analysis) for the back analysis of the elephant's weight from a single footprint. In doing so we validated the first component of a methodology for calculating the weight of extinct dinosaurs. The field experiment was conducted under known boundary conditions at the Zoological Gardens Wuppertal with a female African elephant. The weight of the elephant was measured and the walking area was prepared with sediment in advance. Then the elephant was walked across the test area, leaving a trackway behind. Footprint geometry was obtained by laser scanning. To estimate the dynamic component involved in footprint formation, the velocity the foot reaches when touching the subsoil was determined by the Digital Image Correlation (DIC) technique. Soil parameters were identified by performing experiments on the soil in the laboratory. FEA was then used for the backcalculation of the elephant's weight. With this study, we demonstrate the adaptability of using footprint geometry in combination with theoretical considerations of loading of the subsoil during a walk and soil mechanical methods for prediction of trackmakers weight.

Highlights

  • Since the first massive bones of sauropods were discovered, many scientists have investigated how these animals evolved to their gigantic size [1,2,3]

  • E.g., the Mohr-Coulomb model and the hardening soil model [38], that differ in accuracy, are implemented in the Finite Element Analysis (FEA) code to model the mechanical behavior of soil

  • The Mohr-Coulomb model is mostly used in initial approaches to numerical modeling of soil mechanical behavior only, but it is physically wrong for solving deformation problems as in this research

Read more

Summary

Introduction

Since the first massive bones of sauropods were discovered, many scientists have investigated how these animals evolved to their gigantic size [1,2,3]. Are not their only remains in the fossil record, but the second most common evidence for their former existence are footprints and entire trackways. The track record is important because it provides anatomical details and locomotion patterns of the trackmaker. Unlike bones, which are often transported, trace fossils are autochthonous and provide unequivocal information about the actual habitat of the trackmaker. The enormous tracks of gigantic sauropod dinosaurs occur in sediments from the Late Triassic [4] to Cretaceous all over the world [5]: e.g., in tidal flat deposits of the Paluxy River tracksite in Texas, USA [6]; in fluvial deposits [7,8] and in lacustrine carbonate sediments of the Morrison Formation [9,10] or in lagoonal deposits in Munchehagen, Germany [11,12]. A comprehensive listing and review is found in [13]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.