Abstract
In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.