Abstract
A fivefold increase in adhesion energy is observed for poly(acrylic acid) (PAA) modified Cu/TaN interfaces in which the thin copper films are deposited by the hydrogen assisted reduction of bis(2,2,7-trimethyloctane-3,5-dionato) copper in supercritical carbon dioxide. The PAA adhesion layer is sacrificial at the reaction conditions used, and X-ray photoelectron spectroscopy has shown that the Cu/TaN interface is free of contamination following deposition. The resulting average interfacial adhesion energy is just above 5 J/m2, which meets adhesion requirements for integration in Cu interconnects. The adhesion measurements are performed with a custom built four-point bend fracture mechanics testing system. Comparison of the copper film thickness to the measured adhesion energy indicated that there is no effect on the adhesion energy as the film thickness changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.