Abstract

BackgroundThe cellular signaling pathway (network) is one of the main topics of organismic investigations. The intracellular interactions between genes in a signaling pathway are considered as the foundation of functional genomics. Thus, what genes and how much they influence each other through transcriptional binding or physical interactions are essential problems. Under the synchronous measures of gene expression via a microarray chip, an amount of dynamic information is embedded and remains to be discovered. Using a systematically dynamic modeling approach, we explore the causal relationship among genes in cellular signaling pathways from the system biology approach.ResultsIn this study, a second-order dynamic model is developed to describe the regulatory mechanism of a target gene from the upstream causality point of view. From the expression profile and dynamic model of a target gene, we can estimate its upstream regulatory function. According to this upstream regulatory function, we would deduce the upstream regulatory genes with their regulatory abilities and activation delays, and then link up a regulatory pathway. Iteratively, these regulatory genes are considered as target genes to trace back their upstream regulatory genes. Then we could construct the regulatory pathway (or network) to the genome wide. In short, we can infer the genetic regulatory pathways from gene-expression profiles quantitatively, which can confirm some doubted paths or seek some unknown paths in a regulatory pathway (network). Finally, the proposed approach is validated by randomly reshuffling the time order of microarray data.ConclusionWe focus our algorithm on the inference of regulatory abilities of the identified causal genes, and how much delay before they regulate the downstream genes. With this information, a regulatory pathway would be built up using microarray data. In the present study, two signaling pathways, i.e. circadian regulatory pathway in Arabidopsis thaliana and metabolic shift pathway from fermentation to respiration in yeast Saccharomyces cerevisiae, are reconstructed using microarray data to evaluate the performance of our proposed method. In the circadian regulatory pathway, we identified mainly the interactions between the biological clock and the photoperiodic genes consistent with the known regulatory mechanisms. We also discovered the now less-known regulations between crytochrome and phytochrome. In the metabolic shift pathway, the casual relationship of enzymatic genes could be detected properly.

Highlights

  • The cellular signaling pathway is one of the main topics of organismic investigations

  • A dynamic model using the second-order differential equation is developed to describe the expression profile data as output and the regulatory function as input to denote the implicit characteristics of each gene with some parameters

  • Some biological filters using available biological knowledge are employed to prune the constructed signaling regulatory pathway to improve the accuracy of the proposed method

Read more

Summary

Introduction

The cellular signaling pathway (network) is one of the main topics of organismic investigations. The biochemical processes are mostly interpreted as frameworks of connectivity between biochemical compounds and proteins, which are synthesized from genes to function as transcription factors binding to regulatory sites of other genes, as enzymes catalyzing metabolic reactions, or as components of signal transduction pathways [4,5,6]. This implies that, in order to understand the molecular mechanism of genes in the control of intracellular or intercellular processes, the scope should be broadened from DNA sequences coding for proteins to the systems of genetic regulatory pathways determining which genes are expressed, when and where in the organism and to which extent [7]. The embedded time-course feature of microarray data would promote the system analysis of signal regulatory pathways as well, which is very mature in the field of engineering

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call