Abstract

The biexponential relaxation behavior of the sodium nucleus affects the accuracy of quantitative measurement of in vivo tissue sodium concentration (TSC). Theoretical analysis and in vivo experimental results are used to demonstrate the extent of the large bias in the measured TSC that arises when the relaxation behavior in vivo differs significantly from that of the calibration standards which is when a significant fraction of the total sodium signal decays with a relaxation time much shorter than the echo time (TE) used for imaging. This bias can be as large as 20% for measurements of TSC in a normal rat brain with TE = 2 ms. Our findings indicate that shortening the echo time (TE < 0.5 ms) by projection imaging is a reliable means of obtaining accurate in vivo estimates for TSC using MR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.