Abstract

Covid-19 variants transmissibility was quantitatively analyzed in silico to understand the reaction mechanisms and to find the reaction inhibitors. Especially, SARS-CoV-2 omicron mutant (omicron S-RBD) binding affinity with human angiotensin-converting enzyme-2 (ACE-2) was quantitatively analyzed using molecular interaction (MI) energy values (kcal.mol−1) between the S-RBD and ACE-2. The MI of their optimized complex structures demonstrated that omicron's MI value (749.8) was 1.4 times delta MI (538.1) and 2.7 times alfa MI (276.9). The omicron S-RBD demonstrated the most vital transmissible strength. The 14 currently proposed medical treatment compounds did not show as the inhibitors to block the omicron S-RBD and ACE-2 binding; instead, they adsorbed at the ACE-2 active site and may inhibit the ACE-2 activity. A modified candidate (Gallo catechin gallate) whose two phenolic hydroxy groups were replaced with two carboxy groups was repulsed from ACE-2, indicating that further modification of medical treatment candidates may produce an effective docking inhibitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.