Abstract

A longstanding challenge in nanoparticle characterization is to understand anisotropic distributions of organic ligands at the surface of inorganic nanoparticles. Here, we show that using electron energy loss spectroscopy in an aberration-corrected scanning transmission electron microscope we can directly visualize and quantify ligand distributions on gold nanorods (AuNRs). These experiments analyze dozens of particles on graphene substrates, providing insight into how ligand binding densities vary within and between individual nanoparticles. We demonstrate that the distribution of cetyltrimethylammonium bromide (CTAB) on AuNRs is anisotropic, with a 30% decrease in ligand density at the poles of the nanoparticles. In contrast, the distribution of (16-mercaptohexadecyl)trimethylammonium bromide (MTAB) is more uniform. These results are consistent with literature reported higher reactivity at the ends of CTAB-coated AuNRs. Our results demonstrate the impact of electron spectroscopy to probe molecular distributions at soft-hard interfaces and how they produce spatially heterogeneous properties in colloidal nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.