Abstract

Cell size and density are tightly controlled in mammalian cells. They impact a wide range of physiological functions, including osmoregulation, tissue homeostasis, and growth regulation. Compared to size, density variation for a given cell type is typically much smaller, implying that cell-type-specific density plays an important role in cell function. However, little is known about how cell density affects cell function or how it is regulated. Current tools for intracellular cell density measurements are limited to either suspended cells or cells grown on 2D substrates, neither of which recapitulate the physiology of single cells in intact tissue. While optical measurements have the potential to noninvasively measure cell density in situ, light scattering in multicellular systems prevents direct quantification. Here, we introduce an intracellular density imaging technique based on ratiometric stimulated Raman scattering microscopy (rSRS). It uses intrinsic vibrational information from intracellular macromolecules to quantify dry mass density. Moreover, water is used as an internal standard to correct for aberration and light scattering effects. We demonstrate real-time measurement of intracellular density and show that density is tightly regulated across different cell types and can be used to differentiate cell types as well as cell states. We further demonstrate dynamic imaging of density change in response to osmotic challenge as well as intracellular density imaging of a 3D tumor spheroid. Our technique has the potential for imaging intracellular density in intact tissue and understanding density regulation and its role in tissue homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call