Abstract

BackgroundSpots and coloring patterns evaluated quantitatively can be used to discriminate and identify possible cryptic species. Species included in the Triatoma dimidiata (Reduviidae: Triatominae) complex are major disease vectors of Chagas disease. Phylogenetic studies have defined three haplogroups for Mexico and part of Central America. We report here our evaluation of the possibility of correctly discriminating these three T. dimidiata haplogroups using the pattern of the dorsal spots.MethodsDigital images of the dorsal region of individuals from the three haplogroups were used. Image processing was used to extract primary and secondary variables characterizing the dorsal spot pattern. Statistical analysis of the variables included descriptive statistics, non-parametric Kruskal–Wallis tests, discriminant function analysis (DFA) and a neural classification network.ResultsA distinctive spot pattern was found for each haplogroup. The most differentiated pattern was presented by haplogroup 2, which was characterized by its notably larger central spots. Haplogroups 1 and 3 were more similar to each other, but there were consistent differences in the shape and orientation of the spots. Significant differences were found among haplogroups in almost all of the variables analyzed, with the largest differences seen for relative spot area, mean relative area of central spots, central spots Feret diameter and lateral spots Feret diameter and aspect ratio. Both the DFA and the neural network had correct discrimination values of > 90%.ConclusionsBased on the results of this analysis, we conclude that the spot pattern can be reliably used to discriminate among the three haplogroups of T. dimidiata in Mexico, and possibly among triatomine species.Graphical

Highlights

  • Spots and coloring patterns evaluated quantitatively can be used to discriminate and identify possible cryptic species

  • The most differentiated pattern was presented by haplogroup 2, being primarily apparent in the notably larger central spots

  • In haplogroup 2, the lateral spots and central spots contributed almost to the total spot area, while the percentage that the central spot area contributed to total spot area was slightly higher

Read more

Summary

Introduction

Spots and coloring patterns evaluated quantitatively can be used to discriminate and identify possible cryptic species. The correct delimitation of cryptic species has important implications for research in many fields of biology, such as studies on biodiversity, conservation and behavioral ecology [4], and is frequently achieved using different types of data, such as molecular, ecological, behavioral and geometric morphometric data [5]. This combination of methods, known as integrative taxonomy [5, 6], is the surest and most precise way of determining species limits [7, 8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.