Abstract
Elemental doping is widely used to improve the performance of cathode materials in lithium-ion batteries. However, macroscopic/statistical investigation on how doping sites are distributed in the material lattice, despite being a key prerequisite for understanding and manipulating the doping effect, has not been effectively established. Herein, to solve this predicament, a universal strategy is proposed to quantitatively identify the locations of Al and Mg dopants in lithium-rich layered oxides (LLOs). Solid evidence confirms that Al prefers to occupy the transition metal (TM) layer, while Mg evenly occupies both TM and Li layers. As a result, Mg significantly reduces the thickness of LiO2 slabs at room temperature, which will increase the energy barrier of oxygen activation and enhance the structure stability of LLOs. The suppressed oxygen activity in Mg-doped LLO can be kinetically unlocked at 55°C. The different characteristics of Al and Mg enlighten an Al/Mg co-doping strategy to optimize LLOs, which significantly improves the cycle performance while lifting the capacity. These insights from the quantitative identification of doping sites shed light on the manipulation of doping effects toward better cathodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.