Abstract

The Umm er Radhuma (UER) Formation is a major karst aquifer in Saudi Arabia. This study investigated the hydraulic and petrophysical characteristics of the folded UER carbonate aquifer using integrated hydrological and geophysical logging datasets to understand its complex hydraulic setting as well as detect possible water flow. Petrophysical analysis showed that the UER aquifer has three zones with different lithologic and hydraulic properties. The upper zone attains the best properties with average values of 20%, >100 mD, 3.30 × 10−5–1.34 × 10−3 m/s, and 1.49 × 10−3–6.04 × 10−2 m2/s, with respect to effective porosity, permeability, hydraulic conductivity and transmissivity. The gamma-ray logs indicate a good fracture system near the upper zone of the UER Formation. Pumping test measurements of transmissivity, hydraulic conductivity and storage coefficients were matched with those from geophysical logs and found to be within the expected range for confined and leaky aquifers. Hydrogeological properties were mapped to detect possible groundwater flow in relation to the dominant structure. The underground water of the folded UER aquifer was forced along meandering flow patterns from W-E to SW-NE through the anticlinal axes. The integrated approach can be further used to enhance local aquifer models and improve strategies for identifying the most productive zones in similar aquifer systems.

Highlights

  • Groundwater is considered among the most treasured natural resources, in arid areas

  • Standard Archie equation was applied for fluid content determination and differentiation between producible and connate water in clean zones of the carbonate aquifer

  • Correlation with the results obtained from the detailed petrophysical analysis in this study has showed that these aquifer zones have the lowest hydraulic properties and modest petrophysical properties

Read more

Summary

Introduction

Groundwater is considered among the most treasured natural resources, in arid areas. Carbonate aquifers have significant secondary porosity because of fractures and solution cavities They have anisotropic performance because of the consequence of preferential flows through bedding plane fractures and joints, in folded rocks. The magnitude of the aquifer anisotropy depends on the density and spacing of joints which cut across the bedding plain In these carbonate aquifers, directions of groundwater flow may be difficult to predict, because of their anisotropic nature and existing geologic structures. The aim of this study was to use an integrated geophysical well logging and pumping test analysis to characterize the detailed petrophysical properties and understand the complex hydraulic setting of the folded carbonate aquifer of the UER Formation as well as detect possible ground water flow directions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.