Abstract

Head and neck cancer management requires adjuvant radiotherapy. The authors have previously demonstrated the damaging effect of a human equivalent dose of radiation on a murine mandibular model of distraction osteogenesis. Using quantitative histomorphometry, the authors' specific aim was to objectively measure amifostine radioprotection of the cellular integrity and tissue quality of an irradiated and distracted regenerate. Sprague-Dawley rats were assigned randomly into two groups: radiotherapy/distraction osteogenesis and amifostine/radiotherapy/distraction osteogenesis, which received amifostine before radiotherapy. Both groups received a fractionated human equivalent dose of radiation prior to left mandibular osteotomy with fixator placement. Distraction to 5.1 mm was followed by a 28-day consolidation period. Quantitative histomorphometry was performed on left hemimandibles for osteocytes, empty lacunae, bone volume-to-tissue volume ratio, and osteoid volume-to-tissue volume ratio. Amifostine/radiotherapy/distraction osteogenesis exhibited bony bridging as opposed to radiotherapy/distraction osteogenesis fibrous unions. Quantitative histomorphometry analysis revealed statistically significant higher osteocyte count and bone volume-to-tissue volume ratio in amifostine-treated mandibles compared with irradiated mandibles. There was a corresponding decrease in empty lacunae and the ratio of osteoid volume-to-tissue volume between both groups. The authors have successfully established the significant osseous cytoprotective and histoprotective capacity of amifostine for distraction osteogenesis in the face of radiotherapy. The amifostine-sparing effect on bone cellularity correlated with increased bony unions and elimination of fibrous union. The authors posit that the demonstration of similar efficacy of amifostine in the clinic may allow the successful implementation of distraction osteogenesis as a viable reconstructive option for head and neck cancer in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.