Abstract

The present study explores brain connectivity in Parkinson's disease (PD) and in age matched healthy controls (HC), using quantitative EEG analysis, at rest and during a motor tasks. We also evaluated the diagnostic performance of the phase locking value (PLV), a measure of functional connectivity, in differentiating PD patients from HCs. High-density, 64-channels, EEG data from 26 PD patients and 13 HC were analyzed. EEG signals were recorded at rest and during a motor task. Phase locking value (PLV), as a measure of functional connectivity, was evaluated for each group in a resting state and during a motor task for the following frequency bands: (i) delta: 2-4 Hz; (ii) theta: 5-7 Hz; (iii) alpha: 8-12 Hz; beta: 13-29 Hz; and gamma: 30-60 Hz. The diagnostic performance in PD vs. HC discrimination was evaluated. Results showed no significant differences in PLV connectivity between the two groups during the resting state, but a higher PLV connectivity in the delta band during the motor task, in HC compared to PD. Comparing the resting state versus the motor task for each group, only HCs showed a higher PLV connectivity in the delta band during motor task. A ROC curve analysis for HC vs. PD discrimination, showed an area under the ROC curve (AUC) of 0.75, a sensitivity of 100%, and a negative predictive value (NPV) of 100%. The present study evaluated the brain connectivity through quantitative EEG analysis in Parkinson's disease versus healthy controls, showing a higher PLV connectivity in the delta band during the motor task, in HC compared to PD. This neurophysiology biomarkers showed the potentiality to be explored in future studies as a potential screening biomarker for PD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call