Abstract

AbstractThe effectiveness of any methodology used to identify hazards in chemical processes affects both safety and economics. To achieve maximum safety at minimum cost, a conservative, but realistic, analysis must be carried out. An approach to hazard identification is proposed based on a detailed process model which includes nonlinear dynamics and uncertainty. A new modeling framework, the region‐transition model (RTM), is developed, which enables the simulation of regions of the operating space through an extension of the hybrid state transition system formalism. The RTM is illustrated on a nonlinear batch reactor with parameter uncertainty. A safety‐verification algorithm identifies regions of the input space (initial conditions and external inputs) which guarantee safe operation. The algorithm is successfully applied to three examples: a tank with overflow and underflow, a batch reactor with an exothermic reaction, and a CSTR with feed preheating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.