Abstract

The technique of time resolved frequency modulation (FM) spectroscopy has been shown to provide a very sensitive means to detect small radicals behind shock waves. Features of high temperature FM spectroscopy behind shock waves will be discussed and a general signal conversion procedure to carry out quantitative concentration measurements will be presented.Using a high modulation frequency, a high modulation index and high total optical power, singlet methylene radicals (α

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.