Abstract

Input shaping technique has been applied to flexible-joint robot to suppress its residual vibration from fast point-to-point movement. Input shaping performance deteriorates when the knowledge of the mode parameters of the robot is not accurate. Several robust input shapers were proposed at the expense of longer move time. A novel input shaping system, consisting of a quantitative feedback controller, a feed-forward reference model, and a simple zero-vibration (ZV) input shaper, is proposed in this paper. Advantages over the existing robust input shapers include toleration of substantially larger amount of uncertainty in the mode parameters, shorter move time that does not increase with insensitivity, application to nonlinear and time-varying systems, and suppression of vibration induced by disturbance and noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call