Abstract
Organic compounds in ambient particulate matter (PM) samples are used as tracers for PM source apportionment. These PM samples are collected using high volume samplers; one such sampler is an impactor in which polyurethane foam (PUF) and polypropylene foam (PPF) are used as the substrates. The polymer substrates have the advantage of limiting particle bounce artifacts during sampling; however these substrates may contain background organic additives. A protocol of two extractions with isopropanol followed by three extractions with dichloromethane (DCM) was developed for both substrate precleaning and analyte extraction. Some residual organic contaminants were present after precleaning; expressed as concentrations in a 24-h ambient PM sample, the residual amounts were 1 μ g m −3 for plasticizers and antioxidants, and 10 ng m −3 for n-alkanes with carbon number lower than 26. The quantification limit for all other organic tracer compounds was ≈ 0.1 ng m −3 in a 24-h ambient PM sample. Recovery experiments were done using NIST Standard Reference Material (SRM) Urban Dust (1649a); the average recoveries for polycyclic aromatic hydrocarbons (PAHs) from PPF and PUF substrates were 117 ± 8 % and 107 ± 11 % , respectively. Replicate extractions were also done using the ambient samples collected in Nogales, Arizona. The relative differences between repeat analyses were less than 10% for 47 organic tracer compounds quantified. After the first extraction of ambient samples, less than 7% of organic tracer compounds remained in the extracted substrates. This method can be used to quantify a suite of semi- and non-polar organic tracer compounds suitable for source apportionment studies in 24-h ambient PM samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.