Abstract

In human gait motion analysis, which is one useful method for efficient physical rehabilitation to define various quantitative evaluation indices, ground reaction force, joint angle and joint loads are measured during gait. To obtain these data as unrestrained gait measurement, a novel gait motion analysis system using mobile force plates and attitude sensors has been developed. On the other hand, a human maintains a high correlation among the motion of all joints during gait. The analysis of the correlation in the recorded joint motion extracts a few simultaneously activating segmental coordination patterns, and the structure of the intersegmental coordination is attracting attention to an expected relationship with a control strategy. However, when the evaluation method using singular value decomposition has been applied to joint angles of the lower limb as representative kinematic parameters, joint moments related to the rotational motion of the joints have not yet been considered. In this paper, joint moments as kinetic parameters applied on the lower limb during gait of a normal subject and a trans-femoral amputee are analyzed under change in walking velocity by the wearable gait motion analysis system, and the effectiveness for quantitatively evaluate the rotational motion pattern in the joints of the lower limb by using joint moments is validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.