Abstract

Identifying important phenomena and parameters of LBLOCAs is an important step in nuclear power safety evaluation. Traditional identification processes are based on experience and incorporate important phenomena and parameters without quantifying specific aspects of the models. To accurately identify physical effects, this paper presents the use of multiphase field subchannel code for simulation analysis as applied to numerical examples and specific reactor thermal-hydraulic problems. The results indicate that the code can simulate the relevant phenomena, and the calculation band of the refill stage is narrow, while the calculation band of the reflood stage is wide. In addition, the key impact models are captured. The radiation model most significantly impacts the cladding temperature in the core, and the heat transfer model of transition boiling to the gas phase is most strongly influenced by the quenching time. The interfacial heat transfer model of the large bubble regime for the liquid plays a major role in influencing the water inventory of the lower plenum in the downcomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.