Abstract

Transdermal drug delivery (TDD) has been widely used in medical treatments due to various advantages, including delivering drugs at a consistent rate. However, variations in skin hydration can have a significant effect on the permeability of chemicals. Therefore, it is essential to study the changes in skin hydration induced by TDD patches for better control of the delivery rate. In this work, in vivo terahertz (THz) spectroscopy is conducted to quantitatively monitor human skin after the application of patches with different backing materials and propylene glycol concentrations. Changes in skin hydration and skin response to occlusion induced by other patches are investigated and compared. Our work demonstrates the potential application of in vivo THz measurements in label-free, non-invasive evaluation of transdermal patches on human skin and further reveals the mechanism behind the effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call