Abstract

Phosphorus-deficient rape plants appear to acidify part of their rhizosphere by exuding malic and citric acid. A simulation model was used to evaluate the effect of measured exudation rates on phosphate uptake from Mali rock phosphate. The model used was one on nutrient uptake, extended to include both the effect of ion uptake and exudation on rhizosphere pH and the effect of rhizosphere pH on the solubilization of rock phosphate. Only the youngest zones of the root system were assumed to exude organic acids. The transport of protons released by organic acids was described by mass flow and diffusion. An experimentally determined relation was used describing pH and phosphate concentration in the soil solution as a function of total soil acid concentration. Model parameters were determined in experiments on organic acid exudation and on the uptake of phosphate by rape from a mixture of quartz sand and rock phosphate. Results based on simulation calculations indicated that the exudation rates measured in rape plants deficient in phosphorus can provide the roots with more phosphate than is actually taken up. Presence of root hairs enhanced the effect of organic acid exudation on calculated phosphate uptake. However, increase of root hair length without exudation as an alternative strategy to increase phosphate uptake from rock phosphate appeared to be less effective than exudation of organic acids. It was concluded that organic acid exudation is a highly effective strategy to increase phosphate uptake from rock phosphate, and that it unlikely that other rhizosphere processes play an important role in rock phosphate mobilization by rape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.