Abstract
In this study, three separate flotation systems were studied to define the residual collectors found in different recycled water for sulfide (xanthate-chalcopyrite), non-sulfide with anionic (NaOL-dolomite) and cationic (DTAB-quartz) collector processes. The adsorption/desorption of collectors and the adsorption morphology were studied by the zeta potential and atomic force microscopy (AFM) measurements, the adsorption energy and configurations were simulated by the density functional theory-based first principal calculations. It was found that butyl xanthate (BX) was adsorbed on chalcopyrite surface with pronounced protrusions by chemisorption, and the residual BX in slurry was 5.79 %. While sodium oleate (NaOL) formed scattered protrusions on dolomite surface by weak adsorption, the residual NaOL in slurry was 30.74 % that reacted with the Ca2+ or Mg2+ cations. The dodecyl trimethyl ammonium bromide (DTAB) adsorbed on quartz surface through hydrophobic aggregations and the residual DTAB in slurry was 16.57 %. This work might provide a guidance for understanding reagent consumption and flotation performance in typical mineral flotation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.