Abstract

Conventional (CCT) and accelerated (ACT) creep tests of a weld joint made of COST F and COST FB2 steels were carried out over a temperature range from 550 °C to 650 °C. Fracturing of the crept specimens was located in the heat affected zone (HAZ) of the F steel. Two specimens were selected after CCT and ACT for quantitative evaluation of the precipitates and compared to the weld joint in as-received conditions. Scanning and transmission electron micrographs were used to measure the precipitate size. Both methods were compared and the accuracy of the results was discussed. It was concluded that ACT can simulate the precipitation of chromium carbides and structure recovery during long term creep exposures. However, precipitation of Laves phase during CCT was not recorded after ACT. Therefore, it is difficult to use ACT in this experiment for estimating the long term creep strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.