Abstract

BackgroundAlveolar echinococcosis (AE) lesion microenvironment (LME) is crucial site where parasite-host interactions happen and of great significance during surgery and obtaining liver samples for basic research. However, little is known about quantification of LME range and its’ metabolic activity regarding different lesion characteristics.MethodsA prospective and retrospective analysis of LME from surgical AE patients was performed. Patients (n = 75) received abdominal computed tomography (CT) and position emission tomography/computed tomography using 18F-fluodeoxyglucose (18F-FDG-PET/CT) within 1 week prior to surgery. Semiquantitatively, calcification was clustered with 0%, < 50% and ≥ 50% degrees at lesion periphery; liquefaction was clustered with 0%, < 50%, 50 ~ 75%, ≥75% degrees at lesion center using volumetric ratio. Tumor to background ratio (TBR) of 18F-FDG standard uptake value (SUV, n = 75) was calculated, and range of 18F-FDG uptake area was measured; Multi-site sampling method (MSS, n = 35) was introduced to obtain histological slides to evaluate immune cell infiltrative ranges.ResultsAltogether six major lesion groups have been identified (A: 0% calcified, 0% liquefied; B: ≥50% calcified, 0% liquefied; C: < 50% calcified, < 50% liquefied; D: ≥50% calcified, < 50% liquefied; E: < 50% calcified, 50 ~ 75% liquefied; F: ≥50% calcified, ≥75% liquefied). Statistically, TBR values respectively were 5.1 ± 1.9, 2.7 ± 1.2, 4.2 ± 1.2, 2.7 ± 0.7, 4.6 ± 1.2, 2.9 ± 1.1 in groups A ~ F, and comparisons showed A > B, A > D, A > F, E > B, E > D, E > F, C > B, C > D, C > F (P < 0.05); LME ranges indicated by PET/CT respectively were 14.9 ± 3.9, 10.6 ± 1.5, 12.3 ± 1.1, 7.8 ± 1.6, 11.1 ± 2.3, 7.0 ± 0.4 mm in groups A ~ F, and comparisons showed A > B, A > D, A > F, A > E, C > B, C > D, C > F, E > D, E > F, B > D, B > F (P < 0.05); LME ranges indicated by MSS respectively were 17.9 ± 4.9, 13.0 ± 2.7, 11.9 ± 2.6, 6.0 ± 2.2, 11.0 ± 4.1, 6.0 ± 2.2 mm in groups A ~ F, and comparisons showed A > C, A > D, A > F, B > D, B > F, C > D, C > F (P < 0.05). Generally, less calcifications indicated higher TBR values and wider LME ranges; and, severer liquefactions indicated smaller LME ranges. Additionally, patients with previous medication history had lower TBR values.ConclusionsPET/CT and MSS method showed distinct TBRs and LME ranges for different calcifications and liquefactions. This study would be able to provide references for both surgical resections of lesions and more accurate sample acquisitions for basic research targeted to immunology.

Highlights

  • Alveolar echinococcosis (AE) lesion microenvironment (LME) is crucial site where parasite-host interactions happen and of great significance during surgery and obtaining liver samples for basic research

  • position emission tomography/computed tomography (PET/computed tomography (CT)) and Multi-site sampling (MSS) method showed distinct Tumor to background ratios (TBRs) and LME ranges for different calcifications and liquefactions

  • There is little known about the quantification of standard uptake value (SUV) of 18F-fluodeoxyglucose in position emission tomography/computed tomography (PET/CT) regarding different LME ranges in several heterogenic lesion types

Read more

Summary

Introduction

Alveolar echinococcosis (AE) lesion microenvironment (LME) is crucial site where parasite-host interactions happen and of great significance during surgery and obtaining liver samples for basic research. Little is known about quantification of LME range and its’ metabolic activity regarding different lesion characteristics. Liver being the predominant target organ (> 90%), hepatic AE presents complexity considering the infiltrative growth pattern of the lesion, variant lesion morphology, different clinical stages, distinct biological activity of the parasitic lesion, and metabolic activity of the lesion microenvironment (LME). Sample acquisition from LME liver and adjacent liver tissues (respectively for experimental and control groups) has been introduced to study immunology, fibrosis, pathophysiological changes, etc. There is little known about the quantification of standard uptake value (SUV) of 18F-fluodeoxyglucose in position emission tomography/computed tomography (PET/CT) regarding different LME ranges in several heterogenic lesion types

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.