Abstract
With the aggressive scaling down of the minimum feature size of advanced metal–oxide–semiconductor devices, it has become imperative to design and fabricate process-variation-immune devices. Technology computer-aided design simulations are typically used to test thousands of devices for process-variation immunity, but the process is computationally expensive. In this work, we propose a novel approach to simulate and predict the current–voltage characteristics of fin field-effect transistor devices with process-induced line-edge roughness (LER), within a few seconds. We exploit the Bayesian linear regression model to estimate the mean and standard deviation of the drain-to-source current (I DS) for an arbitrary gate voltage (V GS) and LER profile. We evaluate the prediction accuracy in terms of the mean absolute percentage error (MAPE) and root mean square error (RMSE). The MAPEs for the mean and standard deviation of I DS are <1% and <20%, respectively, and the corresponding RMSEs are 0.0804 and 0.0263, respectively. Once the I DS–V GS distribution is estimated by means of this novel approach, the distributions of other device metrics such as the threshold voltage and off-state leakage current can be estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.