Abstract
In diverse materials science spanning from fine ceramics to lithium-ion batteries and fuel cells, the particle–binder interactions in slurries play a crucial role in governing the ultimate performance. Despite numerous efforts to date, quantitatively elucidating these hidden interactions has remained a longstanding challenge. Here, we demonstrate a dynamic approach to evaluate adsorptive interactions between ceramic particles and polymeric binders entangled in a slurry utilizing differential centrifugal sedimentation (DCS). Particles settling under a centrifugal force field impart significant viscous resistance on the adsorbed binder, leading to its detachment, influenced by particle size and density. This behaviour directly reflects the particle–binder interactions, and detailed DCS spectrum analysis enables the quantitative assessment of nano-Newton-order adsorption forces. An important finding is the strong correlation of these forces with the mechanical properties of the moulded products. Our results provide insight that forming a flexible network structure with appropriate interactions is essential for desirable formability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.