Abstract

During the last decade, researchers have proposed a number of model transformations enabling performance predictions. These transformations map performance-annotated software architecture models into stochastic models solved by analytical means or by simulation. However, so far, a detailed quantitative evaluation of the accuracy and efficiency of different transformations is missing, making it hard to select an adequate transformation for a given context. This paper provides an in-depth comparison and quantitative evaluation of representative model transformations to, e.g., queueing petri nets and layered queueing networks. The semantic gaps between typical source model abstractions and the different analysis techniques are revealed. The accuracy and efficiency of each transformation are evaluated by considering four case studies representing systems of different size and complexity. The presented results and insights gained from the evaluation help software architects and performance engineers to select the appropriate transformation for a given context, thus significantly improving the usability of model transformations for performance prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.