Abstract

Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.