Abstract

PurposeTo quantitatively evaluate and compare the image recognition performance of multiple fiducial markers available in real-time tumor-tracking radiation therapy (RTRT). MethodsClinically available markers including sphere shape, coil shape, cylinder shape, line shape, and ball shape (folded line shape) were evaluated in liver and lung models of RTRT. Maximum thickness of the polymethyl metacrylate (PMMA) phantom that could automatically recognize the marker was determined by template-pattern matching. Image registration accuracy of the fiducial marker was determined using liver RTRT model. Lung RTRT was mimicked with an anthropomorphic chest phantom and a one-dimensional motion stage in order to simulate marker motion in heterogeneous fluoroscopic images. The success or failure of marker tracking and image registration accuracy for the lung model were evaluated in the same manner as that for the liver model. ResultsAll fiducial markers except for line shape and coil shape of thinner diameter were recognized by the PMMA phantom, which is assumed to have the typical thickness of an abdomen, with two-dimensional image registration accuracy of <2 pixels. Three-dimensional calculation error with the use of real-time stereoscopic fluoroscopy in RTRT was thought to be within 1 mm. In the evaluation using the lung model, the fiducial markers were recognized stably with sufficient accuracy for clinical application. The same was true for the evaluation using the liver model. ConclusionsThe image recognition performance of fiducial markers was quantified and compared. The results presented here may be useful for the selection of fiducial markers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.