Abstract

This study evaluates the ability of MRI to quantify all major carotid atherosclerotic plaque components in vivo. Thirty-one subjects scheduled for carotid endarterectomy were imaged with a 1.5T scanner using time-of-flight-, T1-, proton density-, and T2-weighted images. A total of 214 MR imaging locations were matched to corresponding histology sections. For MRI and histology, area measurements of the major plaque components such as lipid-rich/necrotic core (LR/NC), calcification, loose matrix, and dense (fibrous) tissue were recorded as percentages of the total wall area. Intraclass correlation coefficients (ICCs) were computed to determine intrareader and inter-reader reproducibility. MRI measurements of plaque composition were statistically equivalent to those of histology for the LR/NC (23.7 versus 20.3%; P=0.1), loose matrix (5.1 versus 6.3%; P=0.1), and dense (fibrous) tissue (66.3% versus 64%; P=0.4). Calcification differed significantly when measured as a percentage of wall area (9.4 versus 5%; P<0.001). Intrareader and inter-reader reproducibility was good to excellent for all tissue components, with ICCs ranging from 0.73 to 0.95. MRI-based tissue quantification is accurate and reproducible. This application can be used in therapeutic clinical trials and in prospective longitudinal studies to examine carotid atherosclerotic plaque progression and regression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.