Abstract
The conjugate gradient-fast multipole method (CG-FMM) is one of the powerful methods for analysis of large-scale electromagnetic problems. It is also known that CPU time and computer memory can be reduced by CG-FMM but such computational cost of CG-FMM depends on shape and electrical properties of an analysis model. In this paper, relation between the number of multipoles and number of segments in each group is derived from dimension of segment arrangement in four typical wiregrid models. Based on the relation and numerical results for these typical models, the CPU time per iteration and computer memory are quantitatively discussed. In addition, the number of iteration steps, which is related to condition number of impedance matrix and analysis model, is also considered from a physical point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.