Abstract

Thermal treatment has been used for collagen tightening and tissue contour enhancement. It is important to monitor the condition of collagenous tissue during and immediately after thermal treatment. Collagen denaturation changes the optical properties such as scattering coefficient and anisotropy. In this study, Monte Carlo simulation of polarized light was used to calculate the degree of linear polarization (DOLP) of backscattered light from thermally damaged porcine skin, and the Mueller matrix was calculated to verify the result of DOLP. We observed a decrease in the DOLP and a significant change in the radial distribution of the Mueller matrix elements at temperatures ranging from 55 to 65°C. This could be attributed to the increase in scattering coefficient and decrease in anisotropy caused by thermal denaturation in the tissue. The DOLP method has a potential implementation as a real-time closed-loop feedback system for use in various thermal treatment methods through measuring changes in optical properties of target tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.