Abstract

Atom-scaled ripple structure can be intrinsically formed because of thermal instability or induced stress in graphene or two-dimensional (2D) materials. However, it is difficult to estimate the period, amplitude, and shape of such a ripple structure. In this study, by applying the geometrical phase analysis method to atomically resolved transmission electron microscopy images, we demonstrate that the atom-scaled ripple structure of MoS2 nanosheet can be quantitatively analyzed at the subnanometer scale. Furthermore, by analyzing the observed ripple structure of the MoS2 nanosheet, we established that it is inclined by approximately 7.1° from the plane perpendicular to the incident electron beam; it had 5.5 and 0.3 nm in period and amplitude, respectively. For quantitative estimation of ripple structure, our results provide an effective method that contributes to a better understanding of 2D materials in the sub-nanometre scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.