Abstract
In this study, we give some approximation results for the tensor product of (p,q)-Bal?zs-Szabados operators associated generalized Boolean sum (GBS) operators. Firstly, we introduce tensor product (p,q)-Bal?zs-Szabados operators and give an uniform convergence theorem of these operators on compact rectangular regions with an illustrative example. Then we estimate the approximation for the tensor product (p,q)-Bal?zs-Szabados operators in terms of the complete modulus of continuity, the partial modulus of continuity, Lipschitz functions and Petree?s K-functional corresponding to the second modulus of continuity. After that, we introduce the GBS operators associated the tensor product (p,q)-Bal?zs-Szabados operators. Finally, we improve the rate of smoothness by the mixed modulus of smoothness and Lipschitz class of B?gel continuous functions for the GBS operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.