Abstract

Many small globular proteins exist in only two states-the physiologically relevant folded state and an inactive unfolded state. The active state is stabilized by numerous weak attractive contacts, including hydrogen bonds, other polar interactions, and the hydrophobic effect. Knowledge of these interactions is key to understanding the fundamental equilibrium thermodynamics of protein folding and stability. We focus on one such interaction, that between amide and aromatic groups. We provide a statistically convincing case for quantitative, linear entropy-enthalpy compensation in forming aromatic-amide interactions using published model compound transfer-free energy data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call