Abstract

Rhatanyroots (RRs) have been used in indigenous systems of medicines to treat many common illnesses due to the presence of highly active astringent and antiviral biochemical constituents that possess strong therapeutic and pharmacological properties. Due to its widespread use, the accurate knowledge on the elemental composition of this medicinal plant can set a pharmacological research platform to investigate the effect of certain elements, and their ions in mediating the human metabolism and therapy. In this work calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to detect the elements present in RRs sample, by analyzing the characteristic emission wavelengths and their respective intensities in the laser induced plasma, without the need for using any calibration standards or methods. Many nutritional elements, which are of human health significance and instrumental in mediating the established biological activities of RRs, were identified in a relative abundance. In addition to this, our analysis identified the trace level of a few toxic elements, whose overdose due to reckless intake wreaks havoc to human health and wellbeing. The reliability of qualitative and quantitative detection of the elements in RR by LIBS were validated by the standard inductively coupled plasma optical emission spectroscopy (ICP OES), the results of which are in good agreement with LIBS data with better relative accuracy. Also, in order to discriminate, and single out any two elements with the overlapping emission wavelength in LIBS, X-ray photoelectron spectroscopy was also carried out, which in its own right is in good agreement with the elemental analysis of LIBS in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.