Abstract

ObjectiveTo identify quantitative electroencephalography (EEG)-based indicators of delirium or coma in mechanically ventilated patients. MethodsWe prospectively enrolled 28 mechanically ventilated intensive care unit (ICU) patients to undergo 24-hour continuous EEG, 25 of whom completed the study. We assessed patients twice daily using the Richmond Agitation-Sedation Scale (RASS) and Confusion Assessment Method for the ICU (CAM-ICU). We evaluated the spectral profile, regional connectivity and complexity of 5-minute EEG segments after each assessment. We used penalized regression to select EEG metrics associated with delirium or coma, and compared mixed-effects models predicting delirium with and without the selected EEG metrics. ResultsDelta variability, high-beta variability, relative theta power, and relative alpha power contributed independently to EEG-based identification of delirium or coma. A model with these metrics achieved better prediction of delirium or coma than a model with clinical variables alone (Akaike Information Criterion: 36 vs 43, p = 0.006 by likelihood ratio test). The area under the receiver operating characteristic curve for an ad hoc hypothetical delirium score using these metrics was 0.94 (95%CI 0.83–0.99). ConclusionsWe identified four EEG metrics that, in combination, provided excellent discrimination between delirious/comatose and non-delirious mechanically ventilated ICU patients. SignificanceOur findings give insight to neurophysiologic changes underlying delirium and provide a basis for pragmatic, EEG-based delirium monitoring technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.