Abstract

Methylation of lysine 4 on histone H3 (H3K4) at promoters is tightly linked to transcriptional regulation in human cells. At least six different COMPASS-like multisubunit (SET1/MLL) complexes that contain methyltransferase activity for H3K4 have been described, but a comprehensive and quantitative analysis of these SET1/MLL complexes is lacking. We applied label-free quantitative mass spectrometry to determine the subunit composition and stoichiometry of the human SET1/MLL complexes. We identified both known and novel, unique and shared interactors and determined their distribution and stoichiometry over the different SET1/MLL complexes. In addition to being a core COMPASS subunit, the Dpy30 protein is a genuine subunit of the NURF chromatin remodeling complex. Furthermore, we identified the Bod1 protein as a discriminator between the SET1B and SET1A complexes, and we show that the H3K36me-interactor Psip1 preferentially binds to the MLL2 complex. Finally, absolute protein quantification in crude lysates mirrors many of the observed SET1/MLL complex stoichiometries. Our findings provide a molecular framework for understanding the diversity and abundance of the different SET1/MLL complexes, which together establish the H3K4 methylation landscape in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.