Abstract

In this work, we have evaluated the performance of a diffusion-sensitive fast spin-echo (FSE) pulse sequence. The proposed pulse sequence utilises velocity-compensating diffusion-encoding gradients and includes the collection of navigator echoes. Spoiler gradients were inserted in the slice-selecting direction to minimise effects from stimulated echoes. Calculations of the b values showed that cross-terms between imaging gradients and diffusion gradients only led to a marginal increase of b values. Pixel-wise calculation of apparent diffusion coefficient (ADC) maps was performed numerically, considering cross-terms between diffusion-encoding and imaging gradients. The sequences investigated used echo train lengths of 16, 8 and 4 echoes and were encoded in either the slice-, frequency- or phase-encoding direction. In order to allow for higher b values a pulse-sequence version using non-motion compensating diffusion-encoding gradients was written. Phantom measurements were performed and the diffusion coefficients of water and acetone were reasonable. Seven healthy volunteers (age 28–50 years) were examined and apparent diffusion coefficient values agreed well with expected values. Diffusion-weighted images, apparent diffusion coefficient maps and images corresponding to the trace of the diffusion tensor of good quality were retrieved in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.