World Journal of Clinical Cases | VOL. 10
Read

Quantitative differentiation of malignant and benign thyroid nodules with multi-parameter diffusion-weighted imaging

Publication Date Aug 26, 2022

Abstract

The value of conventional magnetic resonance imaging in the differential diagnosis of thyroid nodules is limited; however, the value of multi-parameter diffusion-weighted imaging (DWI) in the quantitative evaluation of thyroid nodules has not been well determined. To determine the utility of multi-parametric DWI including mono-exponential, bi-exponential, stretched exponential, and kurtosis models for the differentiation of thyroid lesions. Seventy-nine patients (62 with benign and 17 with malignant nodules) underwent multi-b value diffusion-weighted imaging of the thyroid. Multiple DWI parameters were obtained for statistical analysis. Good agreement was found for diffusion parameters of thyroid nodules. Malignant lesions displayed lower diffusion parameters including apparent diffusion coefficient (ADC), the true diffusion coefficient (D), the perfusion fraction (f), the distributed diffusion coefficient (DDC), the intravoxel water diffusion heterogeneity (α) and kurtosis model-derived ADC (Dapp), and higher apparent diffusional kurtosis (Kapp) than benign entities (all P < 0.01), except for the pseudodiffusion coefficient (D*) (P > 0.05). The area under the ROC curve (AUC) of the ADC(0 and 1000) was not significantly different from that of the ADC(0 and 2000), ADC(0 to 2000), ADC(0 to 1000), D, DDC, Dapp and Kapp (all P > 0.05), but was significantly higher than the AUC of D*, f and α (all P < 0.05) for differentiating benign from malignant lesions. Multiple DWI parameters including ADC, D, f, DDC, α, Dapp and Kapp could ...

Concepts

Benign Thyroid Nodules Malignant Thyroid Nodules Distributed Diffusion Coefficient Malignant Nodules Apparent Diffusion Coefficient Differential Diagnosis Of Thyroid Nodules Area Under The ROC Curve Thyroid Nodules True Diffusion Coefficient Benign Nodules

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Coronavirus Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  5

The coronavirus disease 2019 (COVID-19) is a contagious disease that is caused by a novel coronavirus. Bentham is offering subject-based scholarly con...

Read More

Climate change Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  5

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cooki...

Read More

Quality Of Education Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  4

Introduction: The Internet is an extensively used source of medical education by the public. YouTube is a valuable source of information which can be ...

Read More

Gender Equality Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  3

Gender equity in the classroom is important for teachers to think about in order to ensure they are creating safe environments that allow their studen...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.