Abstract

Imatinib has been identified as a tyrosine kinase inhibitor that selectively inhibits the Abl tyrosine kinases, including Bcr-Abl. The active substance used in drug product is the mesylate salt form of imatinib, a phenylaminopyrimidine derivative and chemically named as N-(3-(4-(pyridin-3-yl) pyrimidin-2-ylamino)-4-methylphenyl)-4-((4-methylpiperazin-1-yl) methyl)-benzamide methanesulfonic acid salt. It exhibits many polymorphic forms and most stable and commercialized polymorphs are known as α and β forms. Molecules in α and β polymorphic forms exhibit significant conformational differences due to their different intra- and intermolecular interactions, which stabilize their molecular conformations and affect their physicochemical properties such as bulk density, melting point, solubility, stability, and processability. The manufacturing process of a drug tablet included granulation, compression, coating, and drying may cause polymorphic conversions. Therefore, polymorphic content of the drug substance should be controlled during quality control and stability testing. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) methods were evaluated for determination of the polymorphic content of the drug substance and drug product; and PXRD was the most accurate technique and selected as preferred method and validated. Prior to development of a quantification method, pure α and β polymorphs were characterized and used throughout the method development and validation studies. Mixtures with different ratios of α and β forms were scanned using X-ray diffractometer with a scan rate of 0.250°/min over an angular range of 19.5–21.0° 2θ and the peak heights for characteristic peak of β form at 20.5±0.2° 2θ diffraction angle were used to generate a calibration curve. The detection limit of β polymorph in α form imatinib mesylate tablets was found as 4% and the linear regression analysis data for the calibration plots showed good linear relationship with correlation coefficient of 0.992 with respect to relative peak height in the concentration range of 12–75wt% β form containing tablet mixtures. The obtained results at each stage of the validation study proved that the method is specific, repeatable, precise and accurate, and could be used for determination of β polymorph content in tablets produced by using α polymorph of imatinib mesylate. The developed PXRD quantification method was used to monitor the polymorphic purity of α form drug substance and corresponding drug products during the quality control analyses and stability studies, and the results indicated that α form was stable and not converted to β form during the manufacturing process and stability period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call