Abstract

Talatisamine, as the efficacy ingredient of Aconitum, was known as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons. In this study, a rapid, selective and reproducible UPLC-MS/MS separation method was established and fully validated for the quantitative determination of talatisamine levels in ICR (Institute of Cancer Research) mouse blood. A total of 24 healthy male ICR mice were divided into four groups that was administered talatisamine via intravenous at a dose of 1 mg/kg and oral administration of three doses (2, 4, 8 mg/kg). All blood samples were protein precipitate by using acetonitrile with an internal standard (IS) deltaline. The effective chromatographic separation was carried out through an UPLC BEH C18 analytical column (2.1 mm × 50 mm, 1.7 μm) with an initial mobile phase that consisted of acetonitrile and 10 mmol/L ammonium acetate aqueous solution (containing 0.1% formic acid) with a gradient elution pumped at a flow rate of 0.4 mL/min. Also, an electrospray ionization (ESI) was applied to quantify the talatisamine in the positive ions mode. The method validation demonstrated good linearity over the range of 1–1000 ng/mL (r2 ≥ 0.9993) for talatisamine in mouse blood with a lower limit of quantification (LLOQ) at 1 ng/mL. The accuracy values of the method were within 89.4% to 113.3%, and the matrix effects were between 103.2% and 106.3%. The mean extraction recoveries for talatisamine obtained from four concentrations of QC blood samples were exceeded 71.7%, and the relative standard deviation (RSD) both of intra- and inter-day precision values for replicate quality control samples did not exceed 15% respectively for all analytes during the assay validation. This method was successfully applied to the evaluation of the pharmacokinetic of talatisamine, regardless of intragastric or intravenous administration in mice. Based on the pharmacokinetics data, the bioavailability of talatisamine in mice was >65.0% after oral administration, exhibiting an excellent oral absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.