Abstract

AbstractIn this study, a method for quantitative determination of rice moisture based on hyperspectral imaging technology was proposed. First, the hyperspectral imaging system in the spectral range of 871–1766 nm was used to collect the hyperspectral images of 120 rice samples of 10 moisture grades. Support vector regression (SVR), least‐squares support vector regression (LS‐SVR), and bacterial colony chemotaxis least‐squares support vector regression (BCC‐LS‐SVR) models were established to determine the moisture content by using full wavelengths spectra data. Among all the models, the BCC‐LS‐SVR model showed the best results. To simplify the calibration model, successive projections algorithm (SPA) was used for feature selection and the number of characteristic wavelengths was determined as 25. Principal component analysis (PCA) was used for feature extraction and the cumulative contribution rate of the first six principal components reached 99%, which could reflect most of the information of the full spectra data. Three new regression models based on the selected wavelengths were built and the results were improved obviously. The BCC‐LS‐SVR‐SPA model got the best accuracy in prediction and calibration with of 0.980, RMSEP of 0.967%, of 0.985 and RMSEC of 0.591%. The overall results from this study demonstrated that hyperspectral image technology is feasible to detect rice moisture.Practical ApplicationsThe quality of rice has a direct relationship with the moisture content of rice. Because of the moisture content over standard, rice storage time becomes shorter and rice is easy to go bad. It's harmful to eat this rice for a long time. Traditional methods for identification of rice moisture mainly focus on the appearance of rice and depend on the feelings of professionals, which are tedious, time‐consuming, expensive and greatly influenced by subjective factors. Hyperspectral imaging technology has the advantages of nondestructive, rapid, non‐pollution, and so on. The results showed that hyperspectral imaging technology for the detection of the rice moisture is feasible and it can measure the moisture of rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.