Abstract

The complex chemical composition of propolis is related to the plant source to be used by honeybees. Propolis type is defined based on the plant source with the highest proportion in its composition, which is determined by chromatographic techniques as high-performance thin-layer chromatography (HPTLC). In addition to marker component identification to specify the propolis type, quantification of its proportion is also significant for prediction and reproducible pharmacological activity. One drawback for propolis marker component quantitation is that during the chromatographical analysis, not the main but the other plant sources with less proportion may cause interferences during the chemical analysis. In this study, the amounts of marker components were compared with the reference analysis data obtained by high-performance liquid chromatography (HPLC) and from HPTLC images using Partial Least Squares (PLS) and Genetic Inverse Least Squares (GILS) regression methods. Firstly, HPTLC images of propolis samples were processed by an image algorithm (developed in MATLAB) where the bands of each standard and the samples were cut same dimensional pieces as 351 × 26 pixels in height and width, respectively. Simultaneously, reference analysis of the marker components in propolis samples was performed with a validated HPLC method. Consequently, the reference values obtained from HPLC versus PLS, and GILS predicted values of the eight compounds based on the digitized HPTLC images of the chromatograms were found to be matched successfully. The results of the multivariate calibration models demonstrated that HPTLC images could be used quantitatively for quality control of propolis used as a food supplement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call