Abstract

Supercritical fluid extraction (SFE) is a fast, versatile, and solvent-efficient automatic extraction method. Despite its advantages, the results of our proficiency tests imply that the applicability assessments of SFE for pesticide residues were insufficient. In this study, as analytical method using SFE was optimized and validated by testing the incurred and fortified brown rice samples with organophosphorus, pyrethroid, and dithiolane pesticides. Validation study using the incurred sample with etofenprox, fenitrothion, and isoprothiolane was performed by comparing the analytical results obtained using the SFE and solid-liquid extraction with homogenization (SLE), which is a well-validated official multi-residue extraction method. The tests on the fortified samples were also performed for seven pesticide residues, chlorpyrifos, diazinon, O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN), etofenprox, fenitrothion, isoxathion, and isoprothiolane, at three fortification levels, 0.001, 0.01, and 0.1 mg/kg. In the test on the incurred samples, optimized SFE-to-SLE analytical values (CSFE/CSLE) were in 99.2-100.1%, with RSD lower than 3%. In contrast, the analytical-to-spiked concentrations in the tests on the fortified samples were in 96.4-105.0%, with RSD lower than 8.8%. These results indicate that the proposed SFE method, which is well validated with the incurred brown rice sample, is useful for determining organophosphorus, pyrethroid, and dithiolane pesticide residues in brown rice. The proposed SFE method satisfies EU and Japanese maximum residue limits. The consumption of solvent can be reduced to one-fourth of that of SLE using the proposed SFE method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call