Abstract

Excessively applied manure contains a considerable amount of nutrient content such as nitrogen and phosphorus that could potentially pollute groundwater and soil. The present paper evaluated the use of nonlinear regression methods, such as artificial neural networks (ANN), for developing near infrared reflectance spectroscopy calibration models to predict nutrient content in poultry manure. Four representative nutrient ingredients (ammonia nitrogen, AN; total potassium, TK; total nitrogen, TN; total phosphorus, TP) in poultry manure were selected for evaluating ANN feasibility using 91 diverse samples in which three-fourths of the samples were used as a training set and one-fourth as a validation set. The performance of the ANN models was compared with the partial least squares (PLS) models. We found that the ANN models for all 4 nutrient contents consistently gave better predictions than PLS models. The ratios of prediction to deviation of 2.62 (AN), 1.51 (TK), 2.75 (TN), and 2.01 (TP) with the PLS models were improved to 3.02 (AN), 1.74 (TK), 3.41 (TN), and 2.71 (TP) with the corresponding ANN models. These findings demonstrated that the near infrared reflectance spectroscopy model based on the ANN method may be an appropriate tool to predict nutrient content in poultry manure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.