Abstract

Mitochondrial genes were generally adopted for PCR-based meat adulteration authentication due to their excellent specificity to species and numerous copies in one cell. However, the number of mitochondrial gene copies varies according to cells and tissues, which leads to quantification errors for meat adulteration. To address this problem, single-copy nuclear genes were selected to develop a quantitative method for identifying mutton adulteration in this study. Both single-copy genes specific to sheep species and single-copy reference genes show good linearity between Ct values and series diluted DNA concentrations, with the correlation coefficients of 0.9999 and 0.9993, respectively. Meanwhile, a constant (correction factor) was introduced to transform DNA concentrations into mutton proportions in adulterated meat. With this method, simulated mutton-pork, mutton-chicken and mutton-duck adulteration samples could be accurately quantified with the recovery rates of 89.56%, 107.13% and 95.20%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.