Abstract

Lysophosphatidic acid (LPA) is a phospholipid mediator that plays multiple cellular functions by acting through G protein-coupled LPA receptors. LPAs are known to be key mediators in inflammation, and several lines of evidence suggest a role for LPAs in inflammatory periodontal diseases. A simple and sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method has been developed and validated to quantify LPA species (LPA 18:0, LPA 16:0, LPA 18:1 and LPA 20:4) in human saliva and gingival crevicular fluid (GCF). LPA 17:0 was used as an internal standard and the LPA species were extracted from saliva by liquid–liquid extraction using butanol. Chromatography was performed using a Macherey-Nagel NUCLEODUR ® C8 Gravity Column (125 mm × 2.0 mm ID) with a mixture of methanol/water: 75/25 (v/v) containing 0.5% formic acid and 5 mM ammonium formate (mobile phase A) and methanol/water: 99/0.5 (v/v) containing 0.5% formic acid and 5 mM ammonium formate (mobile phase B) at a flow rate of 0.5 mL/min. LPAs were detected by a linear ion trap-triple quadrupole mass spectrometer with a total run time of 8.5 min. The limit of quantification (LOQ) in saliva was 1 ng/mL for all LPA species and the method was validated over the range of 1–200 ng/mL. The method was validated in GCF over the ranges of 10–500 ng/mL for LPA 18:0 and LPA 16:0, and 5–500 ng/mL for LPA 18:1 and LPA 20:4. This sensitive LC–MS/MS assay was successfully applied to obtain quantitative data of individual LPA levels from control subjects and patients with various periodontal diseases. All four LPA species were consistently elevated in samples obtained from periodontal diseases, which supports a role of LPAs in the pathogenesis of periodontal diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.