Abstract

The basal concentration of glutamine in the extracellular fluid, [GLN(ECF)], was determined to be 385 +/- 16 microm in the cortico-striatal region of awake rats. This in vivo concentration was determined by measuring glutamine concentrations in dialysates collected at several flow rates (0.2-4 microL/min), and extrapolating to the concentration at zero flow-rate. Dialysate glutamine concentrations in the somatosensory cortex, hippocampus and thalamus showed no statistically significant difference. In these brain regions, [GLN(ECF)] was elevated 1.5- to 1.8-fold upon perfusion of 50-250 mmalpha-(methylamino)isobutyrate (MeAIB), a competitive inhibitor of glutamine uptake by system A amino acid transporter. The results show, for the first time, that MeAIB causes elevation of brain GLN(ECF)in vivo. The MeAIB-induced elevation of [GLN(ECF)] provides additional support for the current view that system A GLN transporter (Gln T/SAT 1) is the major pathway for the uptake of GLN(ECF) by neurons, while GLN release from glia is mainly mediated by a system N transporter (SN1) which is not inhibitable by MeAIB. The steady-state GLN(ECF) concentration and the effectiveness of MeAIB in inhibiting neuronal GLN uptake in vivo, reported in this study, will be useful, when combined with the known in vitro kinetic properties of the GLN transporters, for study of GLN transport in the intact brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call